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Abstract

Several mounting system design concepts are conceptually used to decouple the engine roll mode though limited success

has been observed in practice. One shortcoming of the existing theories or design methods is that they ignore non-

proportional viscous damping in their formulations. It seems that the rigid-body vibrations are coupled whenever non-

proportional damping is introduced to the mounting system even though the torque roll axis decoupling is still

theoretically possible with proportional damping assumption. To overcome this deficiency, we re-formulate the problem

for a non-proportionally damped linear system while recognizing that significant damping may be possible with passive

(such as hydraulic) or adaptive mounts. The complex mode method is employed in our work and the torque roll axis

decoupling paradigm is re-examined given mount rate ratios, mount locations and orientation angles as key design

parameters. We derive a necessary axiom for a mode in the torque roll axis direction provided two eigenvalue problems, in

terms of stiffness and damping matrices, are concurrently satisfied. Two numerical examples are chosen to examine both

steady-state and transient responses and the extent of coupling or decoupling is quantified. Results show that the torque

roll axis for a mounting system with non-proportional damping (under oscillating torque excitation) is indeed decoupled

when one of the damped modes lies in the torque roll axis direction. Finally, eigensolutions are validated by using

experimental data.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Decoupling of the torque roll axis (TRA) in engine mounting systems has gained much interest given recent
developments in the engine deactivation strategies that tend to enhance the dynamic torques. Jeong and Singh
[1] have surveyed the prior literature and discussed various mounting system design methods and they had also
proposed the TRA decoupling concept using analytical axioms. Unlike other decoupling methods such as the
focalization method [2], their method yields complete decoupling between roll and other motions (bounce,
yaw, pitch, etc.). Bang et al. [3] conceptually applied the TRA decoupling mounting scheme to experimentally
and computationally study the transient vehicle vibration during the key on/off operation. Even though there
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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is significant vehicle vibration due to coupling between roll and fore-and-aft modes, they found improvements
by partially decoupling the powertrain roll mode from other modes under transient torques. Jeong and Singh
[1] and Bang et al. [3] have, however, assumed a proportionally damped system though in reality the viscous
damping matrix C is often non-proportional given highly damped mounts at one or more locations. For
instance, consider the practical case when one or two hydraulic (or adaptive) mounts are utilized along with
rubber mounts; the resulting mount parameters are often frequency-dependent and amplitude-sensitive.
Nevertheless, the linearized mounting system formulation will yield a non-proportional damping matrix CN.
In fact, Yu et al. [4] have concluded (in their review paper) that further work is needed to examine the range of
stiffness and damping properties seen with different mounts and mounting systems. In this paper, we extend
the work of Jeong and Singh [1] and comparatively evaluate undamped, proportionally damped, and non-
proportionally damped six-degree-of-freedom (6-dof) powertrain mounting systems. The extent of TRA
decoupling will be quantified first in terms of the eigensolutions and frequency-response functions given
harmonic torque about the crankshaft axis. Transient responses to an impulse torque will also be examined.

2. Problem formulation and TRA decoupling

2.1. Problem statement

Fig. 1 illustrates a typical powertrain isolation system composed of an inertial body, a rigid chassis
(foundation), and three or four mounts that could be placed at any exterior point and oriented at any angle.
The powertrain is assumed to be a rigid body of dimension six with time-invariant inertial property. Each
engine mount is described by three tri-axial spring elements and their stiffness values are assumed to be
constant and insensitive to the excitation amplitude. Each mount element is associated with viscous (or
structural) damping characteristics. As a result of the assumptions made above, our model is limited to the
lower frequency range. Over middle and higher frequency regimes, the powertain body and chassis are
expected to be compliant and the mount itself could even exhibit the standing wave effect [5]; the flexibility of
foundation (chassis) should be incorporated when the excitation is close to the natural frequencies of
compliant base [6,7]. Though any excitation forces can be applied to the rigid powertrain, we will only
consider the torque excitation in this paper. Since the analytical models for a mounting system are well
established [1,2,6–9], we summarize the basic formulation and then add the general viscous damping C. The
CG
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YTRA q(t) = [X(t) Y(t) Z(t) �X(t) �Y(t) �Z(t)]T

Fig. 1. Typical powertrain isolation system with inclined tri-axial stiffness elements. Both (XYZ)g and (XYZ)TRA are depicted but mount

damping elements are not shown.
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following three coordinate systems are used in our work: Inertial coordinates (XYZ)g, TRA coordinates
(XYZ)TRA, and local mount coordinates (XYZ)mi, i ¼ 1, y, n where n is the number of mounts. The (XYZ)g
coordinate system is a ground-fixed reference frame with its origin at the static equilibrium (at the centre of
gravity (CG)). The displacements of supported inertial body are assumed to be small and the displacement
vector q(t) ¼ [XYZ yx yy yz]

T(t) can be completely expressed by the translational and angular displacements of
the CG. The governing equations of motion are formulated in matrix form, as shown below, where _qðtÞ and
€qðtÞ are the velocity, and acceleration vectors, respectively, of dimension six:

M€qðtÞ þ C_qðtÞ þ KqðtÞ ¼ fðtÞ. (1)

Here, M is the inertial (mass) matrix, K the stiffness matrix, C the viscous damping matrix (assuming non-
proportional damping), and f(t) the external excitation (force/torque) vector. The localized stiffness and
damping matrices, Kmi and Cmi, in the local (XYZ)mi coordinate systems at each mount are expressed as
follows:

Kmi ¼

kai 0 0

kbi 0

sym: kci

2
64

3
75; Cmi ¼

cai 0 0

cbi 0

sym: cci

2
64

3
75. (2a,b)

Here, ka is the principal compressive stiffness, and kb and kc are the principal shear stiffness components.
Likewise, define ca as the principal compressive damping, and cb and cc as the principal shear damping
coefficients. Both matrices are transformed and expressed with respect to the global (XYZ)g coordinate system
using a rotational matrix, Hg,mi, derived from the orientation angles of each mount:

Kg;mi ¼ Hg;miKmiH
T
g;mi ¼

kxxi kxyi kxzi

kyyi kyzi

sym: kzzi

2
64

3
75, (3a)

Cg;mi ¼ Hg;miCmiH
T
g;mi ¼

cxxi cxyi cxzi

cyyi cyzi

sym: czzi

2
64

3
75. (3b)

Using the Euler angles as given by (yi, ji, fi) for ith mount, the rotational matrix, Hg,mi is found by rotating
about axes of (XYZ)g in the order of X, Y, and Z. It includes a product of three rotational matrix operators as
shown below:

Hg;mi ¼

cos ji cos fi cos yi sin fi þ sin yi sin ji cos fi sin yi sin fi � cos yi sin ji cos fi

� cos ji sin fi cos yi cos fi � sin yi sin ji sin fi sin yi cos fi þ cos yi sin ji sin fi

sin ji � sin yi cos ji cos yi cos ji

2
64

3
75. (4)

Since the displacements at the mount location(s) caused by the rigid-body rotations are computed by using a
cross-vector product, the resulting deflection, qmi,t(t), at each mount is as follows based on the rigid foundation
assumption:

qmi;tðtÞ ¼ qtðtÞ þ qyðtÞ � rmi (5)

in which rmi ¼ [rxi ryi rzi]
T is the position vector of each mount and qt(t) ¼ [XYZ]T(t) and qy(t) ¼ [yX yY yZ]

T(t)
are the translational and rotational displacements of powertrain. The cross-vector in Eq. (5) can be expressed
by a tensor skew matrix, Lmi:

qmi;tðtÞ ¼ ½ I Lmi �qðtÞ, (6)

Lmi ¼

0 rzi �ryi

0 rxi

skew sym: 0

2
64

3
75. (7)
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Translational and rotational reaction force fmi,t(t) and moment fmi,y(t) due to the vibratory displacement and
velocity at each mount are calculated as follows:

fmi;tðtÞ ¼ � Kg;miqmi;tðtÞ � Cg;mi _qmi;tðtÞ

¼ � Kg;mi Kg;miLmi

h i
qðtÞ � Cg;mi Cg;miLmi

h i
_qðtÞ, ð8Þ

fmi;yðtÞ ¼ rmi � fmi;tðtÞ ¼ LT
mifmi;tðtÞ

¼ � LT
miKg;mi LT

miKg;miLmi

h i
qðtÞ � LT

miCg;mi LT
miCg;miLmi

h i
_qðtÞ. ð9Þ

Combining Eqs. (8) and (9), we construct the global stiffness K and damping C matrices with respect to the
inertial coordinate system for the powertrain mounting system with n number of mounts:

K ¼
Xn

i¼1

Ki ¼
Xn

i¼1

Kg;mi Kg;miLmi

LT
miKg;mi LT

miKg;miLmi

" #
, (10a)

C ¼
Xn

i¼1

Ci ¼
Xn

i¼1

Cg;mi Cg;miLmi

LT
miCg;mi LT

miCg;miLmi

" #
. (10b)

Eventually, we can assemble the governing equations as given by Eq. (1). Even though the general damping
matrix (C) (such as in Eq. (10b)) is typically formulated before, it is still not considered in any dynamic
analysis [1,4,6–9]; undamped or proportional damping assumption has been invariably employed. It is quite
clear from the formulation that C will not allow a decoupling of the equations in the modal domain.
Accordingly, specific objectives of this article are as follows: (1) examine the effect of non-proportional
damping on the TRA decoupling axioms [1]; (2) propose new analytical conditions that will still yield an
uncoupled system in the presence of non-proportional damping; (3) provide illustrative examples in frequency
and time domains, as well as comparison of eigensolutions with experimental data.
2.2. TRA decoupling with proportional damping

A TRA is uniquely defined by both inertial properties and applied torque direction for an unconstrained
rigid body with small motions given only one-dimensional dynamic torque [1]. The resulting modes from the
eigenvalue problem for a proportionally damped system will yield the same eigenvectors as those of the
corresponding undamped problem. Using this property and letting one of the modes be in the TRA direction,
we can prove that the TRA decoupling for a proportionally damped system is achieved as follows. Apply the
harmonic torque excitation as f(t) ¼ Tejot in Eq. (1) and then assume the steady-state harmonic response is in
the form of q(t) ¼ Qejot we obtain

�o2MQþ joCPQþ KQ ¼ T (11)

in which Cp is proportional damping matrix. The dynamic response of the 6-dof system is expressed by
Q ¼

PN
r¼1brur, where, ur are eigenvectors, br are the modal participation coefficients and N is the number of

modes. Next, we employ the orthogonal property (uTr Mus ¼ drs, u
T
r Kus ¼ krdrs, r,s ¼ 1,2,y,N where drs is the

Kroneker delta function) to get

�o2br þ jouTr CP

XN

s¼1

bsus þ brkr ¼ uTr T. (12)

If we were to assume the Rayleigh damping model (Cp ¼ aM+bK, where a and b are arbitrary scalar values),
we could write Eq. (12) as

br ¼
uTr T

�o2 þ joðaþ bkrÞ þ kr

. (13)
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On the other hand, one of the modes is selected to be parallel to the TRA direction and it is defined as qTRA.
Let one mode, us, be in the TRA direction as follows and use scalar constants, g and r to yield the following:

qTRA ¼ gM�1T and us ¼ rqTRA. (14a,b)

Combining Eqs. (14a,b), we obtain

uTr T ¼
uTr Mus

gr
¼

1

gr
drs; r; s ¼ 1; 2; . . . ;N. (15)

From Eqs. (13) and (15), only bsa0 and br ¼ 0. Eventually, the resulting motion, q(t), exists only in the TRA
direction for a proportionally damped dynamic system. This is consistent with the axiom proposed by Jeong
and Singh [1]. Next consider Eq. (1) with f(t) ¼ 0 leading toM€qðtÞ þ C_qðtÞ þ KqðtÞ ¼ 0. Assume the solution as
q(t) ¼ eltu where l is a scalar constant and u is a constant vector, though both could be complex valued.
Accordingly, we get l2Mu+lCu+Ku ¼ 0. Assuming that l ¼ t+jZ and letting one of the modes be in the
TRA direction (u ¼ qTRA) we obtain the following eigenvalue problem:

ðtþ jZÞ2MqTRA þ ðtþ jZÞCqTRA þ KqTRA ¼ 0. (16)

For the proportional damping case (C ¼ Cp), grouping the above equation in terms of real and imaginary
parts, we have

½ðt2 � Z2 þ taÞMþ ð1þ tbÞK�qTRA þ j½ð2tZþ ZaÞMþ ZbK�qTRA ¼ 0. (17)

Solving Eq. (17) and considering the fact that MqTRAJT, we find that the corresponding eigenvalue problem
for a proportionally damped mounting is given by KqTRA ¼ lkMqTRA. This condition was shown previously,
for an undamped system, by Jeong and Singh [1].

3. Effect of non-proportional damping on the TRA decoupling

3.1. Example case

The effect of non-proportional damping on motion coupling is examined for one example—a V6 diesel
engine [8] whose mounting system parameters (stiffness values, mount locations, and orientation angles) are
given in Table 1. Real and complex eigensolutions for the nominal values of mount parameters are calculated
and compared with measured natural frequencies in Table 2. Our analysis suggests that the measured natural
frequency at 12.47Hz corresponds to the sixth (and not the fifth) mode. Perturbations are applied about the
nominal values of engine inertial data and mount orientation angles and the corresponding eigensolutions are
Table 1

Mount parameters values for the V6 diesel engine example

Mount parameters Mount #

1 2 3 4

Stiffness (Nmm�1)

ka 224 170 217 232

kb 45 126 434 464

kc 45 49 109 116

Location (mm)

rx �225 361 �195 293

ry �309 �282 141 167

rz �199 �251 229 �245

Orientation (deg)

y 0 0 0 0

j �45 �39 �75 �45

f 0 180 0 180
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Table 2

Comparison of calculated and measured natural frequencies

Mode Natural frequencies (Hz)

Measured Undamped (real eigensolution) Damped (complex eigensolution)

With nominal

parameters

Perturbeda about the nominal

values

With nominal

parameters

Perturbed about the nominal

values

1 4.17 4.47 4.31 4.43 (zb ¼ 16%) 4.34 (z ¼ 16%)

2 5.66 5.97 5.86 5.83 (z ¼ 23%) 5.75 (z ¼ 23%)

3 6.47 7.48 7.40 7.13 (z ¼ 30%) 7.05 (z ¼ 29%)

4 8.76 9.87 9.65 9.00 (z ¼ 41%) 8.91 (z ¼ 41%)

5 – 12.27 12.42 10.79 (z ¼ 47%) 10.86 (z ¼ 49%)

6 12.47 16.45 16.48 12.49 (z ¼ 65%) 12.56 (z ¼ 64%)

aPerturbation is applied about the nominal inertial parameters (up to 5%) and orientation angles (up to 12%).
bz is the modal damping ratio.

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857846
also computed as reported in Table 2. We achieve a better agreement with measured data when the complex
eigensolution method with non-proportional damping is used and mounting parameters are perturbed about
the nominal values. This implies that the real V6 engine mounting system is indeed non-proportionally
damped. Frequency-response functions for the TRA decoupled V6 engine mounting system given harmonic
excitation in the crank axis direction are calculated first for the proportional damping as shown in Fig. 2 and
then for the non-proportional damping in Fig. 3. Corresponding mounting parameters for the TRA
decoupling with proportional damping are given in Table 5. Spectra for the original mounting system (without
the TRA decoupled design) are also presented for the sake of comparison. Next, an impulse torque is applied
in the crankshaft axis direction and the resulting transient responses are shown in Figs. 4 and 5, respectively,
for both damping cases. Observe that a complete decoupling of the motions (that are originally coupled to
begin with) is achieved by selecting appropriate mount parameters (stiffness, location, and orientation of
mounts) provided that proportional damping exists. In this case, motion exists only in the roll direction yX as
shown in Fig. 4. But, vibrations are coupled again in Fig. 5 with an introduction of non-proportional
damping. Modal analyses are conducted next by using the complex eigensolution method and results are
reported in Table 3 for two modes of interest. Coupled eigenvectors corresponding to the roll and vertical
bounce modes are found for the non-proportional damping case; conversely, uncoupled eigenvectors exist for
the proportional damping case. Two resonant peaks in the z-direction (vertical bounce) spectra are also found
in Fig. 3c: both peaks show modal coupling.
3.2. Necessary condition for TRA decoupling

The non-proportionally damped system exhibits complex modes (with arbitrary phase angles) that could
differ from the real modes (with 01 or 1801 phase) for proportionally damped system. Governing equations for
mounting system (with CN as non-proportional damping matrix) in the inertial coordinate system are
expressed in state-space form (2N space) as follows:

A_pðtÞ þ BpðtÞ ¼ gðtÞ, (18)

A ¼
M 0

0 �K

� �
; B ¼

CN K

K 0

� �
; pðtÞ ¼

_qðtÞ

qðtÞ

" #
; gðtÞ ¼

fðtÞ

0

� �
. (19a,b,c,d)

The resulting eigenvectors are orthogonal with respect to A and B. Using this property, we can analytically
prove that the TRA decoupling for a non-proportionally damped case could still be achieved as follows. Apply
the harmonic torque excitation as f(t) ¼ Tejot and then the steady-state response will be in the form of
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Fig. 2. Frequency-response functions with proportional damping given harmonic torque: (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o);
and (f) yZ(o). Key: , original mounting system; , torque roll axis decoupled mounting system with proportional damping.

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857 847
q(t) ¼ Qejot, leading to

joAPþ BP ¼ G, (20)

G ¼
T

0

� �
; P ¼

joQ

Q

" #
. (21a,b)

Based on the orthogonal property of eigenvectors, the dynamic response of the 6-dof system is expressed by
P ¼

P2N
r¼1brUr where, Ur are the eigenvectors and br are the modal participation coefficients. Orthogonal

property of the complex eigenvectors provides the following relations: UT
r AUs ¼ drs, UT

r BUs ¼ krdrs, r,
s ¼ 1,2,y,2N. Using the orthogonal property, Eq. (20) yields

br ¼
UT

r G

joþ kr

. (22)
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Fig. 3. Frequency-response functions with non-proportional damping given harmonic torque: (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e)
yY(o); and (f) yZ(o). Key: , original mounting system; , torque roll axis mounting system with non-proportional damping.

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857848
In order to achieve the roll mode motion decoupling, on the other hand, it is assumed that one of the
eigenvectors should be parallel to the TRA direction. Define the TRA direction, qTRA, and let one mode, us, be
in the TRA direction as follows. Here g and r are constants:

qTRA ¼ gM�1T, (23)

Us ¼ rPTRA where Us ¼
lus

us

" #
and PTRA ¼

lqTRA

qTRA

" #
. (24)

Combining Eqs. (23) and (24) and using UT
r AUs ¼ rUT

r

M 0

0 �K

� � lqTRA

qTRA

" #
, we obtain

UT
r G ¼

1

rg
1

l
UT

r AUs þUT
r

0

Kus

" # !
. (25a)
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Fig. 4. Impulsive responses with proportional damping given torque impulse: (a) X(t); (b) Y(t); (c) Z(t); (d) yX(t); (e) yY(t); and (f) yZ(t).

Key: , original; , torque roll axis with proportional damping.

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857 849
Expand the above to yield

UT
r G ¼

1

rg
1

l
ðdrs þ uTr KusÞ. (25b)

Use the orthogonal property, UT
r BUs ¼ krdrs, to rewrite the above as

UT
r G ¼

1

rg
1

l
1þ

kr

2l

� �
drs �

l
2
uTr CNus

� �
. (25c)

Since us is set in the TRA direction, Eqs. (25a–c) become

UT
r G ¼

1

rg
ð1þ asÞdrs. (25d)

Here as ¼ uTs Kus. From Eqs. (22) and (25d), only bsa0 and br ¼ 0. Eventually, the motion response, q(t),
exists only in the TRA direction for a non-proportionally damped dynamic system.
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Fig. 5. Impulsive responses with non-proportional damping given torque impulse: (a) X(t); (b) Y(t); (c) Z(t); (d) yX(t); (e) yY(t); and (f)

yZ(t). Key: , original; , torque roll axis with non-proportional damping.

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857850
3.3. Conditions for TRA decoupling with non-proportional damping

In Section 3.2, we assumed that one of the modes is in the TRA direction for non-proportional damping.
The corresponding eigenvalue problem, as stated by Eq. (26), must be satisfied:

lApTRA þ BpTRA ¼ 0, (26)

pTRA ¼
lqTRA

qTRA

" #
. (27)

Eqs. (26) and (27) give us l2Mu+lCu+Ku ¼ 0, as obtained previously in Section 2.2. For the non-
proportional damping case, grouping of the real and imaginary parts from Eq. (16) leads to

½ðt2 � Z2ÞMþ tCN þ K�qTRA þ j½2tZMþ ZCN �qTRA ¼ 0. (28)
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Table 3

Roll and bounce eigenvectors (u) and damping ratios (z) with proportional (Cp) and non-proportional (CN) damping cases

Dominant mode Roll yx Vertical X (bounce)

C Cp CN Cp CN

u |X| 0 0.02 0 0.01

|Y| 0 0.10 0 0.54

|Z| 0 0.02 1 1.00

|yX| 1 1.00 0 0.52

|yY| 0 0.27 0 0.05

|yZ| 0 0.01 0 0.01

z (%) 2.1 3.1 2.5 4.6

Units of eigenvector elements: mm for X, Y, and Z; degree (deg) for yX, yY, and yZ.

CGX

Z

φ

ka

kb

Y

Z

CG

Machine 

Y

Z

X

#2

#4 #3

#1

CG

T (Oscillating Torque)

Fig. 6. Focalized mounting system.
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In order to satisfy Eq. (28), we must solve two equations in terms of real and imaginary parts, as expressed
below, using the fact that qTRA is a real-valued eigenvector:

½ðt2 � Z2ÞMþ tCN þ K�qTRA ¼ 0 and ½2tZMþ ZCN �qTRA ¼ 0. (29a,b)

Solving Eqs. (29a,b) and considering the fact that MqTRAJT, we obtain KqTRAJT and CNqTRAJT. Thus,
KqTRAJMqTRA and CNqTRAJMqTRA. These lead to two concurrent eigenvalue problems:

KqTRA ¼ lkMqTRA and CNqTRA ¼ lcMqTRA. (30a,b)

These are different from the conventional eigenvalue problems since the K and CN must be constructed for the
mounting system. Further, the eigenvlaue problem for non-proportional damping case is associated with both
stiffness and damping matrixes as given by Eqs. (30a,b). For the proportional damping case (with
Cp ¼ aM+bK), the two eigenvalues, lk and lc are related as lc ¼ a+blk. Both eigenvalues, lk( ¼ t2+Z2) and
Fig. 7. Frequency-response functions given harmonic torque with torque roll axis decoupling scheme for proportional damping applied:

(a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , mounting system with proportional damping; ,

mounting system with non-proportional damping.
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Fig. 8. Frequency-response functions given harmonic torque with torque roll axis decoupling scheme for non-proportional

damping applied: (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , mounting system with proportional

damping; , mounting system with non-proportional damping.

Table 4

Mount locations for torque roll axis decoupled mounting system for the focalized example

Mount # 1 2 3 4

Location (mm)

rx

Cp 318 318 �318 �318

CN 318 318 �318 �318

ry

Cp �198 198 �198 198

CN �101 101 �198 198

rz

Cp �94 �94 �94 �94

CN �150 �150 �94 �94

J.-Y. Park, R. Singh / Journal of Sound and Vibration 313 (2008) 841–857 853
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lc( ¼ �2t), are positive and real since M, K, and C are positive definite. Three eigenvalues (l, lk, and lc) for
the non-proportional damping case corresponding to the eigenvector, qTRA, from three eigenvalue problems
are related. The eigenvalue, l( ¼ t+jZ), of the damped system is written in terms of lk and lc as

l ¼ �ð1
2
Þlc � j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk � ð

1
2
lcÞ

2
q

. Like the proportional damping case, mounting system parameters such as the

orientation angles (yi, ji, fi), stiffness and damping rate ratios (Lki ¼ kai/kbi and Lci ¼ cai/cbi) and their
locations (rmi ¼ [rxi ryi rzi]

T) could be adjusted for the purpose to solve the above equations. Up to ten
unknowns among the mounting parameters including the eigenvalues must be solved for since the rank of each
matrix, K�lkM or CN�lcM, is at most five for a 6-dof mounting system due to its singularity property.
Fig. 9. Frequency-response functions for three values of non-proportional damping index (s) given harmonic torque excitation with

torque roll axis decoupling scheme for proportional damping applied: (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key:

, s ¼ 0; , s ¼ 0.24; , s ¼ 1.0.
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3.4. Non-proportional TRA decoupling for a focalized mounting system

In the focalized mounting system as shown in Fig. 6, an inertial coordinate system is chosen to be the same
as the principal coordinate system and elastic centre lies on one of the principal axes, say the x-axis. Oscillating
torque is assumed to be in the yX direction. It is the most desired case for the mounting system in terms of
elastic axis focalization or TRA decoupling design since it would yield a complete decoupling given the torque
excitation. A focalized mounting system with non-proportional damping is analyzed next and its mounting
system parameters are as follows: mass m ¼ 50.5 kg; moment of inertia (kgm2) IXX ¼ 1.65, IYY ¼ 2.43,
IZZ ¼ 2.54; inertia product (kgm2) IXY ¼ IXZ ¼ IYZ ¼ 0; stiffness ka ¼ 8.4� 105Nm�1; stiffness rate ratio
Lk( ¼ ka/kb) ¼ 2.5; mount orientation f ¼ 301. Two highly damped mounts are used on one side (#1 and #2)
with two poorly damped mounts on the other side (#3 and #4). The damping coefficients are as follows: low
damping ca_L ¼ 300N sm�1; low damping rate ratio Lc_L( ¼ ca_L/cb_L) ¼ 2.5; high damping
ca_H ¼ 3000N sm�1; high damping rate ratio Lc_H( ¼ ca_H/cb_H) ¼ 25. Overall response to the harmonic
torque is shown in Fig. 7. The result is also compared with the response of a proportionally damped system
when the TRA decoupling scheme (with proportional damping) is applied; in this case, four mounts with low
damping are applied at four different positions. Even though the high damped mounts provide significant
amplitude reduction in yX direction, coupled motions in y and yZ direction appear. The TRA decoupling for a
non-proportionally damped mounting system is accomplished by assuming that the mounting parameters
could be separately manipulated for stiffness and damping properties, respectively. The corresponding result is
shown in Fig. 8 where it is also compared with the response of a proportionally damped system (when the
TRA decoupling scheme with proportional damping is applied). Corresponding mount parameters for each
eigenvalue problem are shown in Table 4. Note that K is designed for the proportional damping case based on
KqTRA ¼ lkMqTRA for the TRA decoupling. Conversely, both K and CN are constructed for the non-
proportional damping case based on KqTRA ¼ lkMqTRA and CNqTRA ¼ lcMqTRA.

4. Conclusion

For non-proportionally damped mounting systems, analytical proofs are provided that show the TRA
mode decoupling is possible when excited by the oscillating torque. While one eigenvalue problem,
KqTRA ¼ lkMqTRA, is required for proportional damping, two eigenvalue problems, KqTRA ¼ lkMqTRA and
Table 5

Mount parameters for the torque roll axis decoupled mounting system of a V6 engine with proportional (Cp) and non-proportional (CN)

damping cases

Mount parameters Mount #

1 2 3 4

Stiffness

ka (Nmm�1) 250 250 250 250

Lk 2.5 2.5 2.5 2.5

Location (mm)

rx

Cp 250 250 �250 �250

CN 250 250 �250 �250

ry

Cp �348 324 �286 340

CN �181 180 �200 215

rz

Cp �55 �141 �143 �118

CN �117 �119 �91 �70

Orientation (deg)

f 55 55 55 55
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CNqTRA ¼ lcMqTRA, must be concurrently satisfied for the non-proportional damping case. Note that the
TRA mode should be the corresponding eigenvector in either case.

Finally, we quantify the extent of non-proportionality by using the following index, s, based on Nair and
Singh’s work [10]:

s ¼
XN

i¼1

XN

j¼1

jEijj where E ¼ CM�1K� KM�1C. (31)

This examines deviations from the general condition for proportional damping: CM�1K ¼ KM�1C that was
proposed by Caughey and O’Kelly [11]. The s index is intentionally varied from a proportionally damped to
highly non-proportionally damped system. Comparative spectra for the V6 diesel engine are shown in Fig. 9
Fig. 10. Frequency-response functions given harmonic torque excitation for mounting system with non-proportional damping quantified

by index (s ¼ 1.0 and 1.1): (a) X(o); (b) Y(o); (c) Z(o); (d) yX(o); (e) yY(o); and (f) yZ(o). Key: , torque roll axis decoupling scheme

(with proportional damping) is applied (s ¼ 1.0); , torque roll axis decoupling scheme (with non-proportional damping) is applied

(s ¼ 1.1).
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where the damping in one of the mounts is changed by 1, 3, and 10 times the nominal (proportional) damping
values, respectively. The s index is normalized with respect to the maximum value to be 0, 0.24, and 1. The two
eigenvalue problems developed for non-proportionally damped case are also applied to the V6 engine
mounting system. The non-proportional damping is formulated by using highly damped mounts at two
positions with s ¼ 1.10. For the roll mode decoupling given torque excitation, mount locations are sought in
order to construct K and CN based on two eigenvalue problems that were previously developed; these are listed
in Table 5. The frequency responses are indeed decoupled as shown in Fig. 10; for the sake of comparison,
coupled responses (as calculated previously without using the proposed design concept) are also depicted. It is
seen that magnitude in the rolling motion increases when the TRA decoupling scheme (with non-proportional
damping) is applied. Essentially, it is due to a reduction in damping in the roll direction. From the results
shown in Fig. 9, a higher value of s would induce more coupling between the motions. But, Fig. 10 indicates
that the TRA decoupling is indeed achieved even for a mounting system with high non-proportional damping
as long as the proposed design concept is employed.

Our examples show that the proposed axioms work properly even though there is practical limitation on the
premise that both damping and stiffness elements could be separately manipulated to achieve the desired
decoupling. Further complications arise from spectrally varying and amplitude-sensitive stiffness and damping
properties of the engine mounts, as well as from the compliance of flexible base. Further work along those
lines is in progress.
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